Physiology of morphologically identified cells in the posterior caudal lobe of the mormyrid cerebellum.

نویسندگان

  • Yueping Zhang
  • Victor Z Han
چکیده

The cerebellum of the mormyrid fish consists of three major divisions: the valvula, the central lobes, and the caudal lobes. Several studies have focused on the central lobes and the valvula, but little is known about the caudal lobes. The mormyrid caudal lobe includes anterior and posterior components. The anterior caudal lobe is associated with the lateral line and eighth nerve end organs, whereas the posterior caudal lobe is associated with the electrosensory system. The present study examines the physiology and pharmacology of morphologically identified Purkinje cells and efferent cells in an in vitro slice preparation of the posterior caudal lobe. We found that the Purkinje cells in the posterior caudal lobe can be classified into three subtypes based on both their morphology and on their physiological responses to intracellular current injection and to synaptic inputs from parallel fibers and climbing fibers. Similarities and differences between the physiology of the caudal lobe and that of other regions of the mormyrid cerebellum and the mammalian cerebellum are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensory processing and corollary discharge effects in posterior caudal lobe Purkinje cells in a weakly electric mormyrid fish.

Although it has been suggested that the cerebellum functions to predict the sensory consequences of motor commands, how such predictions are implemented in cerebellar circuitry remains largely unknown. A detailed and relatively complete account of predictive mechanisms has emerged from studies of cerebellum-like sensory structures in fish, suggesting that comparisons of the cerebellum and cereb...

متن کامل

Physiology of cells in the central lobes of the mormyrid cerebellum.

The cerebellum of mormyrid electric fish is unusual for its size and for the regularity of its histology. The circuitry of the mormyrid cerebellum is also different from that of the mammalian cerebellum in that mormyrid Purkinje cell axons terminate locally within the cortex on efferent cells, and the cellular regions of termination for climbing fibers and parallel fibers are well separated. Th...

متن کامل

Sensory processing and corollary discharge effects in posterior caudal lobe Purkinje cells in 1 a weakly electric mormyrid fish

23 Though it has been suggested that the cerebellum functions to predict the sensory 24 consequences of motor commands, how such predictions are implemented in cerebellar circuitry 25 remains largely unknown. A detailed and relatively complete account of predictive mechanisms 26 has emerged from studies of cerebellum-like sensory structures in fish, suggesting that 27 comparisons of the cerebel...

متن کامل

Physiology and plasticity of morphologically identified cells in the mormyrid electrosensory lobe.

The electrosensory lobe (ELL) of mormyrid electric fish is the first stage in the central processing of sensory input from electroreceptors. The responses of cells in ELL to electrosensory input are strongly affected by corollary discharge signals associated with the motor command that drives the electric organ discharge (EOD). This study used intracellular recording and staining to describe th...

متن کامل

The mormyromast region of the mormyrid electrosensory lobe. I. Responses to corollary discharge and electrosensory stimuli.

This is the first of two papers on the electrosensory lobe (ELL) of mormyrid electric fish. The ELL is the first stage in the central processing of electrosensory information from electroreceptors. Cells of the mormyrid ELL are affected at the time of the electric organ discharge (EOD) by two different inputs, EOD-evoked reafferent input from electroreceptors and corollary discharge input assoc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 98 3  شماره 

صفحات  -

تاریخ انتشار 2007